Pharmaceutical Methods 4 (2013) 16-20

Contents lists available at SciVerse ScienceDirect

Pharmaceutical Methods

journal homepage: www.elsevier.com/locate/phme

Original article

Utilization of reversed-phase TLC and topological indices to the lipophilicity investigations of naproxen

Alina Pyka*, Agnieszka Kazimierczak, Danuta Gurak

Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Sosnowiec PL-41-200, Poland

ARTICLE INFO

Article history: Received 22 April 2013 Accepted 23 May 2013 Available online 22 August 2013

Keywords: Naproxen RP-TLC Lipophilicity parameter R_{MW} Theoretical partition coefficient Topological index

ABSTRACT

Aim: The lipophilicity of naproxen by reversed-phase thin-layer chromatography (RP-TLC) and new methods of calculation of partition coefficients were developed.

Methods: Naproxen was investigated with the use RP-TLC on RP2 (Kieselgel 60 F₂₅₄ silanisiert), RP8F_{254s}, RP18F_{254s}, DiolF_{254s}, and CNF_{254s} plates, and methanol–water (pH_{water} = 2.56; 5.73; 8.50) and 1.4-dioxane–water (pH_{water} = 5.73) in different volume compositions as the mobile phases. The chromatographic parameters of lipophilicity (R_{MW}) of the studied naproxen were determined and compared both, with measured (logP_{exp}), and calculated partition coefficients (AlogPs, AClogP, AB/logP, miLogP, AlogP, mlogP, logP_{Kowwin}, xlogP2, and xlogP3). New methods were proposed for calculation of logP for naproxen using the *R*_F value and the numerical value of topological index (¹ χ , ² χ , ¹ χ ^v, ^oB).

Results: It was apparent that the lipophilicities $R_{MW(RP18, pH = 2.56)}$, $R_{MW(RP8, pH = 2.56)}$, $R_{MW(RP8, pH = 2.56)}$, $R_{MW(RP8, pH = 5.73)}$, $R_{MW(RP8, pH =$

using the new approach, correlate the best with experimental partition coefficient. Copyright © 2013, InPharm Association, Published by Reed Elsevier India Pvt. Ltd. All rights reserved.

1. Introduction

Lipophilicity is one of the parameters of drugs which influence their biological activities. Lipophilicity is defined by the partitioning of a compound between a nonaqueous and an aqueous phase and is expressed as logP. The different partition chromatographic techniques, and theoretical methods have been widely used as a reliable alternative to classical determination of logP.^{1–8} Topological indices and the R_F values were also used to prediction of lipophilicity of substances investigated.^{9–18}

Naproxen has pharmacological and pharmaceutical significance. It is a non-steroidal anti-inflammatory drug. It is used for reduction of pain, fever, inflammation and stiffness caused by conditions (for example: osteoarthritis, kidney stones, rheumatoid arthritis, pso-riatic arthritis, gout, menstrual cramps, tendinitis, bursitis, and others).¹⁹

Therefore, the aims of this work were:

• to determine the lipophilicity of naproxen by RP-TLC method on RP2F₂₅₄, RP8F_{254s}, RP18F_{254s}, Diol F_{254s}, and CNF_{254s} plates using a methanol-water and 1,4-dioxane-water as mobile phases;

- to determine the influence of pH water on the lipophilicity of naproxen;
- to propose new methods of calculation of partition coefficients on the basis of numerical value of topological index as well as on the basis of *R*_F value received by RP-TLC technique for studied naproxen.

The experimental n-octanol-water partition coefficient and chromatographic parameters of lipophilicity values were compared with lipophilicity values estimated by computational methods for naproxen.

2. Material and methods

2.1. Chemicals and standard solutions

The following components of the mobile phase: methanol (E. Merck, Germany; for liquid chromatography), 1,4-dioxane (POCh, Gliwice, Poland, analytical grade) and distilled water (pH = 5.73) were used for RP-TLC analysis. Distilled water was acidified with hydrochloric acid (35–38%, pure for analysis, POCh, Gliwice, Poland) to pH = 2.56, and alkalized with ammonia (25%, pure for

2229-4708/\$ - see front matter Copyright © 2013, InPharm Association, Published by Reed Elsevier India Pvt. Ltd. All rights reserved. http://dx.doi.org/10.1016/j.phme.2013.05.001

^{*} Corresponding author. E-mail address: apyka@sum.edu.pl (A. Pyka).

I able 1	Ta	ble	1
----------	----	-----	---

Parameters of the linear regression (\pm SE) relating the $R_{\rm M}$ values of naproxen to the methanol content (ϕ) of methanol–water (pH = 2.56) mobile phase (according to eq. (1): $R_{\rm M} = R_{\rm MW}$ –S· ϕ) for analysis performed on particular plates.^a

Chromatographic support (symbol of lipophilic parameter)	$R_{\rm MW}$ (±SE)	S (±SE)	n	r	SEE	F	Range of the volume fraction of methanol (φ)	Eq. no.
RP18 ($R_{MW(RP18, pH = 2.56)}$) RP8 ($R_{MW(RP8, pH = 2.56)}$)	2.934 (±0.266) 2.983 (±0.167)	3.96 (±0.35) 4.01 (±0.22)	6 6	0.985 0.994	0.146 0.091	131 340	$\begin{array}{c} 1.00 \div 0.50 \\ 1.00 \div 0.50 \end{array}$	(6) (7)
RP2 ($R_{MW(RP2, pH = 2.56)}$) Diol ($R_{MW(Diol, pH = 2.56)}$)	$0.970~(\pm 0.162)\ 1.055~(\pm 0.211)$	$\begin{array}{c} 2.60 \ (\pm 0.24) \\ 2.63 \ (\pm 0.31) \end{array}$	8 8	0.976 0.962	0.152 0.198	122 74	$1.00 \div 0.30$ $1.00 \div 0.30$	(8) (9)
$CN (R_{MW(CN, pH = 2.56)})$	2.404 (±0.062)	3.57 (±0.08)	7	0.998	0.045	1759	$1.00 \div 0.40$	(10)

^a Where: SE – standard error; n – number of points to drive the particular regression equation; r – correlation coefficient; SEE – standard error of the estimation; F – the values of the Fisher test; for all regression equation the significance level (p) is < 0.0005.

analysis, POCh, Gliwice, Poland) to pH = 8.50. The pH of water was measured by use of pehameter (Elmetron, Poland). The commercial sample of naproxen (Sigma Aldrich, lot: 097K1452, meets USP testing specifications) was used as test solute. Standard solution of naproxen (20 mg/10 mL) was prepared in ethanol (99.8%, pure for analysis, POCh, Gliwice, Poland).

2.2. Application of reversed-phase thin-layer chromatography for determination of chromatographic parameters of lipophilicity

Reversed partition thin-layer chromatography (RP-TLC) was done on RP2F₂₅₄ (E. Merck, #1.05474), RP8F_{254s} (E. Merck, #1.15424), RP18F_{254s} (E. Merck, #1.05559), Diol F_{254s} (E. Merck, #1.05636) and CNF_{254s} (E. Merck, #1.12571) plates. Solution of examined naproxen was spotted on chromatographic plates in quantity of 10 μ g of naproxen in 5 μ L of solution. The chromatograms were developed by using the mixtures of methanol + water (pH_{water} = 2.56; 5.73; 8.50), 1,4-dioxane + water (pH_{water} = 5.73), and the content of organic modifier in mobile phase was gradually varied by 10% (%, v/v) from 30 to 100 (%, v/v).

Fifty mL of mobile phase was placed into a classical chromatographic chamber (Camag, Switzerland). The chamber was saturated with solvent for 20 min. The chromatograms were developed at the room temperature, e.g., 22 °C. The development distance was 7.5 cm. The plates were dried at the room temperature, e.g., 22 °C. A Camag densitometer was used to obtainment of R_F values. Densitometric scanning was then performed at 254 nm. The radiation source was a deuterium lamp emitting a continuous spectrum between 190 and 450 nm. The slit dimensions were 10.00×0.40 mm, Macro; the optimized optical system was light; the scanning speed was 20 mm s⁻¹; the data resolution was $100 \ \mu m \ step^{-1}$; the measurement type was remission; and the measurement mode was absorption; the optical filter was second order. The chromatograms were done in triplicate and mean R_F values were used to calculate R_M .

The $R_{\rm M}$ values obtained for studied naproxen on RP2F₂₅₄, RP8F_{254s}, RP18F_{254s}, Diol F_{254s}, and CN F_{254s} plates, using the methanol–water and 1,4-dioxane–water mobile phases were extrapolated to zero concentration of organic modifier in eluent ($R_{\rm MW}$), in accordance with Soczewiński–Wachtmeister⁴ equation:

$$R_{\rm M} = R_{\rm MW} - S \cdot \varphi \tag{1}$$

where: $R_{\rm M}$ is the $R_{\rm M}$ value of examined substance by content φ of volume fraction of organic modifier in mobile phase; $R_{\rm MW}$ is the theoretical value of $R_{\rm M}$ of naproxen extrapolated to zero concentration of methanol in mobile phase; *S* is the slope of the regression curve; φ is the volume fraction of organic modifier in the mobile phase.

2.3. Calculation of theoretical partition coefficients

The values of theoretical partition coefficients such as: AlogPs, AClogP, AB/logP, miLogP, AlogP, mlogP, logP_{Kowwin}, xlogP2, and xlogP3 [5–8] were calculated with the use of the Internet databases.

2.4. Topological indices

Selected topological indices based on adjacency matrix: Randić $({}^{1}\chi, {}^{2}\chi, and {}^{1}\chi^{\nu}), {}^{20}$ and also based on distance matrix: Pyka $({}^{0}B)^{21}$ were calculated. Pyka index was calculated by building a distance matrix and determining its elements by means of values given by Barysz et al. 22

2.5. New methods of calculation logP for naproxen

New methods of calculation logP were proposed for naproxen, namely according to the equations (2)-(5):

$$\log P = {}^{o}B + R_{\rm F} \tag{2}$$

$$\log P = {}^{2}\chi \cdot R_{\rm F} \tag{3}$$

$$\log P = {}^{1}\chi \cdot R_{\rm F} \tag{4}$$

$$\log P = {}^{1}\chi \cdot R_{\rm F} \tag{5}$$

where ${}^{o}B$, ${}^{1}\chi$, ${}^{1}\chi^{v}$, and ${}^{2}\chi$ are topological indices, and $R_{\rm F}$ is retardation factor of naproxen.

Table 2

Parameters of the linear regression (\pm SE) relating the $R_{\rm M}$ values of naproxen to the methanol content (φ) of methanol–water (pH = 5.73) mobile phase (according to eq. (1): $R_{\rm M} = R_{\rm MW}$ –S· φ) for analysis performed on particular plates.^a

Chromatographic support (symbol of lipophilic parameter)	$R_{\rm MW}$ (±SE)	S (±SE)	n	r	SEE	F	Range of the volume fraction of methanol (φ)	Eq. no.
$ \begin{array}{l} \text{RP18} \ (R_{\text{MW}(\text{RP18}, \text{ pH} = 5.73)}) \\ \text{RP8} \ (R_{\text{MW}(\text{RP8}, \text{ pH} = 5.73)}) \\ \text{RP2} \ (R_{\text{MW}(\text{RP2}, \text{ pH} = 5.73)}) \\ \text{Diol} \ (R_{\text{MW}(\text{Diol}), \text{ pH} = 5.73}) \\ \text{CN} \ (R_{\text{MW}(\text{CN}, \text{ pH} = 5.73)}) \end{array} $	$\begin{array}{l} 1.351 \ (\pm 0.066) \\ 2.785 \ (\pm 0.130) \\ 0.385 \ (\pm 0.106) \\ 1.172 \ (\pm 0.116) \\ 1.752 \ (\pm 0.112) \end{array}$	$\begin{array}{c} 1.73 \ (\pm 0.09) \\ 3.81 \ (\pm 0.18) \\ 2.18 \ (\pm 0.15) \\ 2.37 \ (\pm 0.16) \\ 2.89 \ (\pm 0.16) \end{array}$	7 7 8 7 8	0.993 0.994 0.985 0.989 0.991	0.048 0.095 0.100 0.084 0.106	361 454 199 221 315	$0.90 \div 0.30$ $1.00 \div 0.40$ $1.00 \div 0.30$ $0.90 \div 0.30$ $1.00 \div 0.30$	(11) (12) (13) (14) (15)

^a Where: SE – standard error; n – number of points to drive the particular regression equation; r – correlation coefficient; SEE – standard error of the estimation; F – the values of the Fisher test; for all regression equation the significance level (p) is <0.0005.

Table 3

Parameters of the linear regression (\pm SE) relating the $R_{\rm M}$ values of naproxen to the methanol content (φ) of methanol–water (pH = 8.50) mobile phase (according to eq. (1): $R_{\rm M} = R_{\rm MW}$ –S· φ) for analysis performed on particular plates.^a

Chromatographic support (symbol of lipophilic parameter)	$R_{\rm MW}$ (±SE)	S (±SE)	n	r	SEE	F	Range of the volume fraction of methanol (φ)	Eq. no.
RP18 ($R_{MW(RP18, pH = 8.50)}$) RP8 ($R_{MW(RP8, pH = 8.50)}$)	1.415 (±0.102) 2.861 (±0.124)	1.87 (±0.14) 3.40 (±0.16)	7 6	0.986 0.996	0.074 0.067	177 444	0.90÷0.30 0.90÷0.30	(16) (17)
RP2 ($R_{MW(RP2, pH = 8.50)}$)	0.452 (±0.175)	2.07 (±0.25)	7	0.965	0.162	68	$1.00 \div 0.30$ (except 0.60)	(18)
Diol ($R_{MW(Diol, pH = 8.50)}$)	$1.210(\pm 0.146)$	2.92 (±0.22)	7	0.986	0.131	172	1.00÷0.30 (except 0.90)	(19)
$CN (R_{MW(CN, pH = 8.50)})$	1.911 (±0.102)	3.09 (±0.15)	8	0.993	0.096	432	$1.00 \div 0.30$	(20)

^a Where: SE – standard error; n – number of points to drive the particular regression equation; r – correlation coefficient; SEE – standard error of the estimation; F – the values of the Fisher test; for all regression equation the significance level (p) is <0.0005.

3. Results and discussion

The lipophilicity of naproxen was investigated with the use reversed-phase thin-layer chromatography on RP2F₂₅₄, RP8F_{254s}, RP18F254s, Diol F254s, and CNF254s plates, using methanol-water (pH_{water} = 2.56; 5.73; 8.50) and 1,4-dioxane-water (pH_{water} = 5.73) in different volume compositions as the mobile phases. The $R_{\rm M}$ values obtained for studied naproxen were extrapolated to zero concentration of organic modifier in mobile phase in accordance with Soczewiński-Wachtmeister equation (1). The terms of the regression equations (eqs. (6)–(25)) describing the dependence of the R_M values of the naproxen on organic modifier content (φ) of the mobile phase are listed in Tables 1–4 for analysis performed on particular plates using methanol–water ($pH_{water} = 2.56; 5.73; 8.50$) and 1,4-dioxane-water ($pH_{water} = 5.73$) in different volume compositions as the mobile phases, respectively. The high correlation coefficients (*r*), the values of the Fisher test (F), the significance levels (*p*), and small values of the standard errors of the estimates

(S) were indicated that all the equations obtained were highly significant. The equation (23) is an exception (r = 0.375, F = 0.82, p = 0.4070).

The R_{MW} value of naproxen dependence on chromatographic support, and the composition of mobile phase. The obtained R_{MW} values were from -0.572 to 2.983. Generally, the highest lipophilicity of naproxen was obtained on particular chromatographic plates and using methanol–water (pH_{water} = 2.56). The smaller influence of pH water on the lipophilicity of naproxen was observed on RP8F_{254s} plates.

All determined chromatographic parameters of lipophilicity for naproxen are lower in relation to its value of the experimental partition coefficient. Experimental *n*-octanol-water partition coefficient $(\log P_{exp})^8$ for naproxen is equal 3.18.

Similarity analysis was also used for comparison of experimental partition coefficient $(logP_{exp})$ with chromatographic lipophilicity of naproxen. The results (Euclidean distance, single linkage) are presented in Fig. 1. It was apparent that the

Table 4

Parameters of the linear regression (\pm SE) relating the R_M values of naproxen to the dioxane content (ϕ) of 1,4-dioxane–water (pH = 5.73) Mobile phase (according to eq. (1): $R_{\rm M} = R_{\rm MW} - S \cdot \phi$) for analysis performed on particular plates.^a

Chromatographic support (symbol of lipophilic parameter)	R _{MW} (±SE)	S (±SE)	n	r	SEE	F	Range of the volume fraction of dioxane (φ)	Eq. no.
RP18 ($R_{MW(RP18, pH = 5.73, d)}$)	1.728 (±0.186)	$2.79 (\pm 0.29)$	7	0.973	0.156	90	$0.90 \div 0.30$	(21)
RP8 ($R_{MW(RP8, pH = 5.73), d}$)	$2.356(\pm 0.141)$	3.65 (±0.21)	6	0.993	0.088	303	$0.90 \div 0.40$	(22)
RP2 $(R_{MW(RP2, pH = 5.73, d)})$	$-0.572(\pm 0.249)$	0.35 (±0.39)	7	0.375	0.206	0.82	$0.90 \div 0.30$	(23)
Diol ($R_{MW(Diol), pH = 5.73, d}$)	0.420 (±0.142)	2.01 (±0.22)	7	0.970	0.119	79	$0.90 \div 0.30$	(24)
CN $(R_{MW(CN, pH = 5.73, d)})$	$1.565(\pm 0.081)$	2.89 (±0.12)	8	0.995	0.076	607	$1.00 \div 0.30$	(25)

^a Where: SE – standard error; n – number of points to drive the particular regression equation; r – correlation coefficient; SEE – standard error of the estimation; F – the values of the Fisher test; for all regression equation the significance level (p) is <0.0005 [except is equation (23): p = 0.4070].

Table 5

Lipophilicity parameter (logP) calculated on the basis of topological indices and selected R_F values from RP18F₂₅₄, RP8F₂₅₄, and CNF₂₅₄ plates for naproxen.

LogP for naproxen	logP calculated on the basis of topological index and $R_{\rm F}$ value obtained by the use								
calculated using equation	Methanol + water (pH = 2.56)		Methanol + water (pH = 5.73)		Methanol + v	vater (pH = 8.50)	1,4-Dioxane + water ($pH = 5.73$)		
*	8:2 (v/v)	7:3 (v/v)	8:2 (v/v)	7:3 (v/v)	8:2 (v/v)	7:3 (v/v)	8:2 (v/v)	7:3 (v/v)	6:4 (v/v)
RP18F ₂₅₄ plates									
$logP = {}^{o}B + R_{F}$	3.239	2.918	3.150	3.065	3.145	3.113	3.259	3.092	3.082
$\log P = {}^{2}\chi \cdot R_{F}$	3.374	1.814	2.942	2.528	2.918	2.762	3.472	2.660	2.611
$\log P = {}^{1}\chi \cdot R_{F}$	4.369	2.348	3.808	3.273	3.777	3.576	4.495	3.443	3.380
$\log P = {}^{1}\chi^{v} \cdot R_{F}$	3.762	2.021	3.280	2.819	3.252	3.079	3.871	2.965	2.911
RP8F254 plates									
$\log P = {}^{o}B + R_{F}$	3.158	3.012	3.158	3.025	3.158	2.985	3.305	3.099	3.007
$\log P = {}^{2}\chi \cdot R_{F}$	2.981	2.271	2.981	2.334	2.981	2.140	3.696	2.694	2.246
$\log P = {}^{1}\chi \cdot R_{F}$	3.859	2.940	3.859	3.022	3.859	2.770	4.784	3.487	2.908
$\log P = {}^{1}\chi^{v} \cdot R_{F}$	3.323	2.532	3.323	2.602	3.323	2.385	4.120	3.003	2.504
CNF ₂₅₄ plates									
$logP = {}^{o}B + R_{F}$	3.278	3.092	3.318	3.177	3.282	3.150	3.423	3.282	3.145
$\log P = {}^{2}\chi \cdot R_{F}$	3.564	2.660	3.759	3.073	3.584	2.942	4.269	3.584	2.918
$logP = {}^{1}\chi \cdot R_{F}$	4.614	3.443	4.866	3.978	4.639	3.808	5.527	4.639	3.777
$logP = {}^{1}\chi^{v} \cdot R_{F}$	3.974	2.965	4.190	3.426	3.995	3.280	4.760	3.995	3.252

The best results of IogP for naproxen are by bold and italics

Fig. 1. Similarity analysis of the chromatographic parameters of lipophilicity R_{Mw} and the experimental n-octanol-water partition coefficients (logP_{exp}) for naproxen (Euclidean distance, single linkage).

lipophilicities $R_{MW(RP18, PH = 2.56)}$, $R_{MW(RP8, PH = 2.56)}$, $R_{MW(RP8, PH = 5.73)}$, $R_{MW(RP8, PH = 8.50)}$, $R_{MW(CN, PH = 2.56)}$, and $R_{MW(RP8, PH = 5.73, d)}$ values were most similar to the experimental partition coefficient. Therefore, the RP8F_{254s} plates are the best for lipophilicity analysis of naproxen.

The theoretical partition coefficients calculated using different software products for naproxen are equal: AlogPs = 3.29, AClogP = 2.80, AB/logP = 3.01, miLogP = 3.38, AlogP = 2.82, mlogP = 2.76, logP_{Kowwin} = 3.10, xlogP2 = 2.84, xlogP3 = 3.34, and = 3.04. Comparing all calculation procedures, generally AlogPs, logP_{Kowwin}, xlogP3, AB/logP, and are more appropriate for chromatographic parameter of lipophilicity $R_{MW(RP18, PH = 2.56)}$, $R_{MW(RP8, PH = 5.73)}$, $R_{MW(RP8, PH = 8.50)}$, $R_{MW(CN, PH = 2.56)}$, $R_{MW(RP8, PH = 5.73)}$ and experimental *n*-octanol-water partition coefficient of studied naproxen.

New methods of logP calculation for naproxen using the $R_{\rm F}$ value and the numerical value of topological index $({}^{1}\chi, {}^{2}\chi, {}^{1}\chi^{\nu}, {}^{o}B)$ were proposed. Calculated topological indices for naproxen are equal to $^{1}\chi = 6.2950, ^{2}\chi = 5.4209, ^{1}\chi^{v} = 4.8625, ^{o}B = 2.5453.$ These topological indices and R_F values obtained on RP8F_{254s}, RP18F_{254s}, and CNF_{254s} plates were used for the logP calculation for naproxen. Lipophilicity parameters (logP) calculated by use of the equations (2)–(5) and selected R_F values from RP18F₂₅₄, RP8F₂₅₄, and CNF₂₅₄ plates for naproxen are presented in Table 5. The logP values calculated for naproxen by use of R_F values and topological index ^oB, using the new approach, correlate the best with experimental partition coefficient. From the data presented in this work it is apparent that the topological index ^oB describes additional important elements of chemical structure of investigated compounds not given by the other topological indices. Topological index ^oB proposed earlier by Pyka was used to determination of lipophilicity and other physicochemical parameters for many compounds.9-11,14,16-18

4. Conclusions

It was stated that the $RP8F_{254s}$ plate and methanol—water mobile phase are suitable for the estimation of lipophilicity of examined naproxen. The chromatographic parameter of lipophilicity R_{MW} , AlogPs, $logP_{Kowwin}$, xlogP3, AB/logP, and the logP values calculated by the use of R_F values and topological index ^oB may be the alternative methods of lipophilicity determination of examined naproxen.

Conflicts of interest

All authors have none to declare.

Acknowledgement

This research was financed by the Medical University of Silesia as part of statutory research project.

References

- Tsantili-Kakolidou A, Cazes J, eds. Lipophilicity: Assessment by RP/TLC and HPLC in Encyclopedia of Chromatography. 3rd ed. Taylor and Francis; 2010: 1400–1404. http://dx.doi.org/10.1081/E-ECHR3-120040663.
- Cipan GCazes J, ed. Organic Substances: Lipophilicity Determination by RP/TLC in Encyclopedia of Chromatography. 3rd ed. Taylor and Francis; 2010:1693–1695. http://dx.doi.org/10.1081/E-ECHR3-120040036.
- Angelov T, Vlasenko A, Tashkov W. HPLC determination of pK_a of parabens and investigation of their lipophilicity parameters. J Liq Chromatogr Rel Technol. 2008;31:188–197.
- Jóźwiak K, Szumiło H, Soczewiński E. Lipophilicity, methods of determination and its role in biological effect of chemical substances. *Wiad Chem.* 2001;55: 1047–1074 [in Polish].
- Tetko IV, Gasteiger J, Todeschini R, et al. Virtual computational chemistry laboratory – design and description. J Comput Aided Mol Des. 2005;19: 453–463
- Tetko IV. Computing chemistry on the web. Drug Discov Today. 2005;10:1497– 1500.
- Mannhold R, Poda GI, Ostermann C, Tetko IV. Calculation of molecular lipophilicity: state-of-the-art and comparison of log P methods on more than 96,000 compounds. J Pharm Sci. 2009;98:861–893.
- VCCLAB Virtual Computational Chemistry Laboratory; 2005. http://www. vcclab.org.
- Pyka A. The application of topological indexes in TLC. J Planar Chromatogr Mod TLC. 2001;14:152–159.

- Pyka ACazes J, ed. Topological Indices: TLC in Encyclopedia of Chromatography. 3rd ed. Taylor and Francis; 2010:2340–2350. http://dx.doi.org/10.1081/E-ECHR3-120045548.
- Pyka ACazes J, ed. Topological Indices: Use in HPLC in Encyclopedia of Chromatography. 3rd ed. Taylor and Francis; 2010:2351–2360. http://dx.doi.org/ 10.1081/E-ECHR3-120045322.
- 12. Pyka A, Miszczyk M. Chromatographic evaluation of the lipophilic properties of selected pesticides. *Chromatographia*. 2005;61:37–42.
- Pyka A, Klimczok W. Study of lipophilicity and application of selected topological indexes in QSAR analysis of nicotinic acid derivatives. Investigations on RP18WF254 plates part. J Planar Chromatogr Mod TLC. 2005;18:300–304.
- 14. Niestroj A. Comparison of methods for calculation of the partition coefficients of selected tocopherols. *J Planar Chromatogr Mod TLC*. 2007;20:483–486.
- Podgorna M. Application of topological index and the R_F parameter to the estimation of lipophilic properties of selected porphyrins. J Liq Chromatogr Rel Technol. 2008;31:1458–1464.
- Niestrój A. Comparison of methods for calculation of the partition coefficients of selected aliphatic compounds. J Planar Chromatogr Mod TLC. 2010;23:198–200.

- Stefaniak M, Pyka A, Śliwiok JNyiredy Sz, ed. Application of the RF Values and Topological Indices to Modify logP According to Rekker of Selected Porphiryns and Metalloporphiryns Separated by RP-TLC Technique, Proceedings of the International Symposium on Planar Separation "Planar Chromatography 2004". Hungary: Visegrad; May 23–25, 2004:593–601.
- Pyka A, Sliwiok J. Chromatographic separation of tocopherols. J Chromatogr A. 2001;935:71–77.
- Kara IM, Polat S, Ince F, Gümüş C. Analgesic and anti-inflammatory effects of oxaprozin and naproxen sodium after removal of impacted lower third molars: a randomized, double-blind, placebo-controlled crossover study. J Oral Maxillofac Surg. 2010;68:1018–1024.
- Devillers J, Balaban AT. Topological Indices and Related Descriptors in QSAR and QSPR. The Netherlands: Gordon and Breach Science Publishers; 1999.
- 21. Pyka A. Correlation of topological indexes with the chromatographic separation of isomers. *J Planar Chromatogr Mod TLC*. 1991;4:316–318.
- Barysz M, Jashari G, Lall RS, Srivastava RS, Trinajstić N. On the distance matrix of molecules containing heteroatoms. Chemical applications of topology and graph theory. Stud Phys Theor Chem. 1983;28:222–230.