Quantification and Validation of Simvastatin and Ezetimibe in Bulk Drugs and Combined Dosage Form by Reverse Phase Liquid Chromatographic Method (RPLC)

Nalini Kanta Sahoo1, Madhusmita Sahu1, Veerachamy Alagarsamy1, Bollu Vijaya Lalitha2, Alok Kumar Moharana3 and Chinmaya Keshari Sahoo4

1MNR College of Pharmacy, Fasalwadi, Sangareddy, Medak, Telangana, India.
2Yalamarty Pharmacy College, Tarluvada, Anandapuram, Visakhapatnam, Andhra Pradesh, 530052, India.
3Omega College of Pharmacy, Ghatkesar, R.R. dist, Telangana, India.
4Department of Pharmaceutics, Osmania University College of Technology, Osmania University, Hyderabad, Telangana-500007, India.

ABSTRACT
A simple, time saving, precise and cost effective reverse phase high performance liquid chromatographic (RP-HPLC) method development was achieved for the determination and estimation of simvastatin and ezetimibe in its pure form and combined formulation. Separation was achieved by using Zorbax (100 x 4.6 mm, 5µl C18) column with mobile phase consisted of acetonitrile and methanol in a ratio of 60:40 (v/v). The separation was observed at 232 nm with flow rate adjusted to 1 ml/min .simvastatin and ezetimibe were retained at 9.603 and 3.861 minutes successively. Validation was done for the developed method based upon different parameters like linearity, precision, limit of detection and limit of quantitation. Simvastatin and ezetimibe obey Beer-Lambert’s law in the range of 20.0-160 µg/ml and 5-40 µg/ml respectively. The % recoveries of simvastatin and ezetimibe were found to be 101.25% and 102.03% respectively from the tablet formulation. The limit of detection of simvastatin and ezetimibe were found to be 1.34 µg/ml and 0.253 µg/ml successively. The limit of quantitation of simvastatin and ezetimibe were found to be 4.489 µg/ml and 0.846 µg/ml successively. The established method is suitable for simultaneous estimation of simvastatin and ezetimibe in their pure forms and combined formulation.

Key words: Simvastatin, Ezetimibe, RP-HPLC, Simultaneous estimation.

Correspondence :
Dr. Nalini Kanta Sahoo, Associate Professor, MNR College of Pharmacy, Fasalwadi, Sangareddy, Medak, Telangana, India.
Phone no: 09550741536, 09396772373
E-mail: sahoomncop15@gmail.com

DOI : 10.5530/phm.2015.6.17

INTRODUCTION
Simvastatin chemically known as butanoic acid, 2, 2-dimethyl-1, 2, 3, 7, 8, 8a-hexahydro-3, 7-dimethyl-8-[2(tetrahydro-4-hydroxy-6-oxo-2H-pyranyl-2-yl)-ethyl]-1-naphthalenyl-ester (Figure 1), is an anti-lipidemic drug which is derived synthesized from fermentation products of Aspergillus terreus.7 Simvastatin mainly used for the treatment and management of dyslipidemia and the prevention of cardiovascular disease.1 It is instructed to use only after other measures such as diet, exercise, and weight reduction have not improved cholesterol levels.1 General adverse reactions may include abdominal pain, diarrhoea, indigestion, and a general feeling of weakness. Rare side effects include joint pain, memory loss, and muscle cramps.8 Cholestatic hepatitis, hepatic cirrhosis, rhabdomyolysis and myositis have been reported in patients receiving the drug chronically.9 Ezetimibe (Figure 2) is a drug that decreases cholesterol. It decreases absorption of cholesterol in the intestine. It may be used alone (marketed as Zetia or Ezetrol), when other cholesterol lowering medications are not tolerated, or simultaneously with statins (ex-simvastatin/ezetimibe marketed as vytorin) when statins alone don’t suppress cholesterol.2 Although ezetimibe controls cholesterol, the outcomes of two clinical trials (2008 and 2009) proved that it was not having any improvement, like major coronary events, and shown some outcomes, like thickening of artery wall, worse. Eventually, a panel of experts concluded in 2008 that it should “can be the last resort”.6 Simvastatin was estimated by several methods including liquid chromatography with UV detection (LC–UV)10-12, gas chromatography–mass spectrometry (GC-MS).13 Ezetimibe was estimated alone or without combination of several drugs by high performance liquid chromatography and spectrophotometrically.11,12 Literature investigations reveal some HPLC methods have been reported for the estimation of these two drugs in combined dosage forms. Preliminary separation enforces pursuing of present research work.

MATERIALS AND METHODS
Materials, reagents and instrumentation
Simvastatin and Ezetimibe were gifted by Aurobindo Pharmaceuticals, Hyderabad, Andhra pradesh. HPLC grade Methanol and acetonitrile were purchased from Desai chemicals, Visakhapatnam. Waters HPLC 4000-separation module. Millennium software with PDA detector was used for analysis and recording.Zorbax C18 column (100cm X 4.5 micron) was used as stationary phase. Mobile phase composed of HPLC grade acetonitrile and methanol (60: 40 v/v) with pH adjusted to 3.8 with O-Phosphoric acid was used. 20µl sample was injected with analysis time or run time of 15 min and flow rate adjusted to 1ml/min. The column was maintained at normal temperature (30° C) and the analytes were observed at 232 nm.

Standard solutions
Simvastatin standard stock solution: About 80mg of standard drug was transferred into 100ml volumetric flask. Added with few ml of diluent and mixed. The volume was made up to mark with mobile phase to give 800 µg/ml stock solution. From this different concentrations were prepared to give 20-160 µg/ml for construction of calibration curve.
Ezetimibe standard stock solution:
About 40 mg of ezetimibe was weighed and transferred to a 100 ml volumetric flask. Then susbublized with diluents and vortexed well. The volume was adjusted to the level with mobile phase to give 400 µg/ml. From this different concentrations were prepared to give 5-40 µg/ml for construction of calibration curve.

Standard solution:
Five ml of Ezetamibe standard stock solution and 20 ml of Simvastatin standard stock solution were taken one 100 ml volumetric flask and diluted to volume with diluent and mix followed by making up of volume with mobile phase to give the required concentration for injection in to the RP-HPLC system.

Assay of Marketed formulation:
Twenty tablets, Simvotin-EZ (80 mg of simvastatin & 10 mg of ezetimibe) were weighed and grinded into powder form. Accurately weighed quantity powder form equivalent to 80mg of simvastatin and 20 mg of ezetimibe was weighed and taken in a clean volumetric flask. The contents were diluted using diluent to get rid of additives. The contents were mixed thoroughly using Centrifuge at 5000 rpm for 10 min and filtered through 0.45 micron filter. From the filtrate final concentration was prepared in such a manner to give 160 µg/ml of simvastatin and 20 µg/ml of ezetimibe. Finally 20 µl sample was introduced into RP-HPLC instrumentation and analyzed.
RESULTS AND DISCUSSION

The proposed HPLC method consumed very less amount of chemicals and requisites, which made it cost effective and time saving with high reproducibility. This newer method can be used in pharmaceutical quality control and analytical development laboratories. The HPLC peaks of simvastatin and ezetimibe were represented in Figure 3. The two peaks were well separated from each other with Rt of 9.603 & 3.861 minutes for simvastatin & ezetimibe (Table 1) consecutively.

Validation

Linearity

The developed method was found to be linear in the range of 20 -160 µg/ml for simvastatin & 5 - 40 µg/ml for ezetimibe. Each calibration curve sample was observed by injecting to the RP-HPLC system. Linearity graph was plotted by taking concentration (µg/ml) of each drug sample Vs Area under curve(AUC) individually. The intended developed method was measured by its R² value and slope intercept value. They are shown by linear regression equations below (Figure 5, 6) and Table 2.

\[Y_{\text{Simvastatin}} = 7048.6X + 76.8, \quad \text{‘R}^2\text{‘ value= 1} \quad (1) \]
\[Y_{\text{Ezetimibe}} = 33168X + 59.422, \quad \text{‘R}^2\text{‘ value= 1} \quad (2) \]

These equations were used to assure linearity of the developed method.

Accuracy and Precision

The accuracy of the method was estimated in terms of recovery studies. The recovery studies were done at three concentration levels and the % recovery and %RSD was reported. From the observed values, % recoveries were found to be very accurate and well within the limits (Table 5).

Precision is the reproducibility of the results. The intraday and inter day precision results in terms of % RSDs for simvastatin and ezetimibe was found to be less than 2%. The result for in the day (intraday precision) & within the day (interday precision) of simvastatin was 1.27 and 1.77 and ezetimibe was 1.63 and 1.83 consecutively. The results (Table 3 and 4) agreed with the conformation that the present RP-HPLC method found to be accurate and precise as the results obtained are well within the limits.

Specificity of the developed method

The PDA peaks or chromatograms for simvastatin and ezetimibe in pure drug and marketed sample were recorded and analyzed. In the Marketed sample...
sample chromatogram it is noticed by presence of some co-eluting peaks which might be for the presence of other additives in the formulation. The co-eluting peaks however did not have any interference with the main peaks, which conforms the developed RP-HPLC method is specific.

Limit of Detection and Quantification (LOD & LOQ)

The LOD and LOQ can be calculated by using the formulas $3S/b$ & $10S/b$ respectively. Where S stands for standard deviation of intercept and b represents slope of calibration curve. The minimum concentration levels at which the analytes (simvastatin and ezetimibe) can be detected (LOD) and quantified (LOQ) were precisely found to be 1.34 µg/ml, 4.489 µg/ml and 0.253 µg/ml, 0.846 µg/ml respectively.

Assay results for combined dosage form

The % recovery of simvastatin and ezetimibe were found to be 99.495 and 99.985 respectively with %RSD values 0.302 & 0.391, signify that the prescribed assay method is precise and accurate. The results are represented in Table 6 for six replicates (n=6). The chromatogram for the combined dosage form is shown in Figure 4.

CONCLUSION

A new reverse phase liquid chromatographic method indicating assay of simvastatin and ezetimibe simultaneously in bulk and combined tablet dosage form is implemented. The method is simple, reliable, sensitive, accurate, reproducible and cost effective for the successful estimation of both the drugs simultaneously in bulk and tablet dosage form. The method was completely validated with all pertinent documents showing that all results are well within the limits. Also the method was found to be free of interference due to other ingredients or additives used in formulation. Therefore the method is suitable for routine analysis of simvastatin and ezetimibe in bulk and combined tablet dosage form in quality control laboratories.

AUTHOR’S CONTRIBUTIONS

NKS and MS planned and designed the whole work. NKS and AV did the method development and some validation parameters like accuracy and precision studies. MS and BVL did the estimation in marketed formulation. Finally AKM and CKS did rest of the validation parameters.

ACKNOWLEDGEMENT

The authors would like to acknowledge the contributions of MNR College of Pharmacy, Fosalwadi, Sangareddy, Medak, Telangana, India for providing necessary facilities to carry out the research work.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

PICTORIAL ABSTRACT

• A simple, time saving, precise and cost effective reverse phase high performance liquid chromatographic (RP-HPLC) method development was achieved for the determination and estimation of simvastatin and ezetimibe in its pure form and combined formulation by using mobile phase consisted of acetonitrile and methanol in a ratio of 60:40 (v/v).
• The separation was observed at 232 nm with flow rate adjusted to 1 ml/min. simvastatin and ezetimibe were retained at 9.603 and 3.861 minutes successively.
• Validation was done for the developed method based upon different parameters like linearity, accuracy, precision, limit of detection and limit of quantitation.

ABOUT AUTHORS

Dr. Nalini Kanta Sahoo: Completed his Ph.D in Pharmaceutical analysis from Siksha “O” Anusandhan University, Bhubaneswar. His research area focused on Analytical and bioanalytical chemistry. He published one book and 30 research articles.

Mrs. Madhusmita Sahu: Completed her M. Pharmacy in Pharmacology and recently working in MNR college of pharmacy. Her research area includes various screening methods. She published around 20 research publications.

SUMMARY