RP-HPLC Forced Degradation Studies of Aztreonam in Pharmaceutical Dosage Form

Vipin Prakash1, Jerad Suresh2, Sarif Niroush Konari1

1Department of Pharmaceutical Analysis, JDT Islam College of Pharmacy, Calicut – 673012, Kerala, INDIA. 2Principal, College of Pharmacy, Madras Medical College, Chennai, Tamil Nadu, INDIA.

ABSTRACT

Introduction: Aztreonam belongs to the monobactam class of antibiotic used to treat infectious diseases produced by gram-negative bacteria. This work presents the development of LC methods for the estimation of Titled drug in pharmaceutical dosage form and forced degradation studies on four different stress conditions.

Method: A waters HPLC Inspire (4.6 x 250mm, 5µm) in isocratic mode, with mobile phase containing buffer: Acetonitrile (40:60 %v/v) pH 3 adjusted with orthophosphoric acid were used. The flow rate was 1ml/min and linearity range was established at 5- 25 µg/ml.

Conclusion: Degradation studies disclose method abilities on various stress conditions. Forced degradation results can be used for the development of stable dosage form and for the designing of proper storage requirement.

The proposed method is accurate, precise, specific and rapid for the estimation of aztreonam injection.

Key words: Aztreonam, RP-HPLC, Forced degradation studies, Method development.

Correspondence

Vipin Prakash1*
Department of Pharmaceutical Analysis, JDT Islam College of Pharmacy, Calicut, Kerala, INDIA.
Phone no: +918891674551
E-mail: 1vipin1@gmail.com
DOI : 10.5530/phm.2018.1.8

INTRODUCTION

Aztreonam1,2 is a synthetic monobactam bactericidal antibiotic originally isolated from chromo bacterium violaceum. It is a white crystalline powder. Aztreonam is chemically (z)-2- [(2- amino - 4-thiazolyl) [(2S - 3S) - 2- methyl- 4- o xo -1- sulfo -3-azetidinyl] carbomoyl] methylene [amino] oxy] -2- methyl propionic acid, which is used in the treatment of life threatening infections with susceptible gram-negative aerobic organisms, especially Pseudomonas aeruginosa. Aztreonam acts by inhibiting bacterial cell wall peptidoglycan synthesis. Literature reviews3-11 revealed, no stability indicating method of estimation for aztreonam by high performance liquid chromatography12-14 has been reported so far except in biological fluids.

MATERIALS AND METHOD

Reagents and chemicals

Aztreonam was obtained from APL research lab Hyderabad. Methanol, water (LC-grade) and orthophosphoric acid were obtained from Merck. LC grade Acetonitrile were purchased from Molychem. Analytical grade sodium hydroxide (NaOH), Hydrochloric acid (HCl), were obtained from Fischer scientific. Hydrogen peroxide (H2O2) and 0.22 µm membrane filter were obtained from Sigma–Aldrich. Formulation was procured from the local market having strength of 500 mg/vial. All chemicals were of analytical or LC-grade. All the measurements were made using Waters HPLC. All the solutions were freshly prepared by using HPLC grade solvents.

Optimized chromatographic conditions

Instrument used: Waters HPLC with auto sampler and 2487 UV detector with Empower 2 software.

Temperature: Ambient

Column: Inspire (4.6 x 250mm, 5µm)

Mobile Phase: buffer pH 3; Acetonitrile 40:60

Flow rate: 1 ml per min

Wavelength: 255 nm

Injection volume: 20 µl

Stock and working solution

10 mg of aztreonam was taken in a 100 ml standard flask and the volume was made up to 100 ml with water to get a concentration of 100 µg/ml of aztreonam. From the above solution, further dilutions were made to get concentrations from 5-25 µg/ml.

Preparation of sample solution

The whole content of the vial was transferred to a 100 ml standard flask and dissolved in 10 ml of water for injection. Then the volume was made up to 100 ml using water (HPLC grade). From this 1 ml was taken and diluted to 10ml. From the above solution 2 ml was taken and diluted to 10 ml (100 µg/ml). The above solution was further diluted to get concentrations ranging from 5-25 µg/ml. The amount of drug present in the vial was calculated as follows.

Amount of drug present = Concentration X dilution factor
Volume taken

Degradation Studies

The International Conference on Harmonization (ICH) guideline entitled stability testing of new drug substances and products requires that stress testing should be carried out to elucidate the inherent stability characteristics of the active substance. The aim of this work was to perform the stress degradation studies on aztreonam using the proposed method.

Preparation of stock

Accurately weighed and transferred 10 mg of aztreonam working standard into a 10 ml clean dry volumetric flask, added about 7 mL of Diluent and sonicated to dissolve it completely and made volume up to the
Accuracy
Where, the percentage recovery was calculated using the formula,

Percentage Recovery = \frac{b - a}{c} \times 100

Hydrolytic degradation under acidic condition
Pipetted out 0.75 ml of above solution into a 10 ml volumetric flask and 3 ml of 0.1N HCl was added. Then, the volumetric flask was kept at 60°C for 6 hours and then neutralized with 0.1 N NaOH and made up to 10ml with diluent. Filtered the solution with 0.22 microns syringe filters and placed in vials.

Hydrolytic degradation under alkaline condition
Pipetted out 0.75 ml of above solution into a 10 ml volumetric flask and 3 ml of 0.1N NaOH was added in 10 ml of volumetric flask. Then, the volumetric flask was kept at 60°C for 6 h. Then neutralized with 0.1 N HCl and made up to 10ml with diluent. Filtered the solution with 0.22 microns syringe filters and placed in vials.

Thermal induced degradation
Aztreonam sample was taken in petridish and kept in Hot air oven at 110°C for 24 hrs. Then the sample was taken and diluted with diluents and injected into HPLC and analyzed.

Oxidative degradation
Pipetted out 0.75 ml of above stock solution into a 10 ml volumetric flask and 1 ml of 3% w/v of hydrogen peroxide was added and the volume was made up to the mark with diluent. The volumetric flask was then kept at room temperature for 15 min. Filtered the solution with 0.45 microns syringe filters and placed in vials.

Photo degradation
Pipetted out 0.75 ml of above stock solution into a 10 ml volumetric flask and exposed to sunlight for 24 hrs and the volume was made up to the mark with diluent. Filtered the solution with 0.45 microns syringe filters and placed in vials.

RESULTS AND DISCUSSION

Optimization of Separation conditions
Different ionic strengths such as 10, 25 mM solutions of potassium dihydrogen phosphate, adjusted to pH 2.6 were initially employed for the separation of aztreonam in the ratio of 20:80 (methanol: buffer). In all the cases aztreonam showed split peak with tailing, but in the case of buffer pH 3: Acetonitrile 40:60, a symmetrical peak with good separation was achieved.

Validation of the method
Validation studies were carried out on different parameters as per ICH guideline such as recovery study, method precision and intermediate precision, range, LOD and LOQ. System suitability study. Linearity was established at five different concentrations with good correlation coefficient value 0.9998. Accuracy or recovery was conducted at different levels. Precision studies were carried out using the same optimized conditions and RSD was less than 2 %. LOD and LOQ indicate, the method was highly sensitive and fast. The method was found highly specific since there was no interference from the excipients of the formulations. Analytical solution was found stable up to 24 hrs on refrigeration (Table 1).

Forced degradation studies
Different stress conditions were used in the study. In case of hydrolytic stress degradation under acidic 0.1N hydrochloric acid was used as reagent whereas in alkaline condition 0.1N sodium hydroxide was incorporated. Drug was refluxed with acid, alkali and water for about 6 hrs at 60°C targeting 5-20% degradation. In oxidative degradation studies...
Table 1: Validation of developed RP-HPLC method

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery</td>
<td>102.3± 0.19</td>
</tr>
<tr>
<td>Precision</td>
<td>144886.7±273.2697</td>
</tr>
<tr>
<td>Method</td>
<td>145772.3±402.134</td>
</tr>
<tr>
<td>Intermediate/ruggdness</td>
<td>5 –25µg/ml</td>
</tr>
<tr>
<td>LOQ</td>
<td>5 µg/ml</td>
</tr>
<tr>
<td>LOD</td>
<td>20 ng/ml</td>
</tr>
</tbody>
</table>

System suitability parameters

- USP Plate count: 9097.50
- USP Tailing factor: 0.95333

Stability

- Room Temperature: 2 h
- Refrigeration: 1 day

Recovery-Average mean three determinations in each level, Average mean of six determinations for precision.
3% v/v hydrogen peroxide was used and kept at room temperature for 15 min. In thermal studies, conducted for 24 hrs at 110°C. In photolytic degradation, drug was exposed to sunlight for 24 hrs. Slightly high degradation was noted for peroxide stress condition than other conditions. Only one degradant peak was observed which did not interfere with the main peak. From the degradation studies, the peak angle of the drug was less than the purity threshold which indicates there was no merging of impurity peak with the analyte peak (Table 2 and Figure 1-5).

CONCLUSION

A Rapid, stable and sensitive stability indicating assay method was developed and validated. Extent of degradation increases with an increase in the duration of stress studies and the degradant peak was not interfering with main peak. It can be concluded that the developed method is stable for specified period of time in different stress conditions. This method can be extended for characterization of the degradants with integrated approach and they can be effectively applied for routine analysis in various drug testing departments.

ACKNOWLEDGEMENT

The authors are thankful to APL Research centre (a division of Aurobindo Pharma Ltd., Hyderabad for providing gift sample of drugs and PharmaTrain, Hyderabad.

CONFLICT OF INTEREST

Nil

ABBREVIATION USED

RP-HPLC: Reverse-phase High-performance liquid chromatography; NaOH: sodium hydroxide; HCl: Hydrochloric acid; LC: Liquid chromatography.

REFERENCES

SUMMARY

- This overlay contain peak purity plot and degradation chromatogram of titled drug.
- This analytical technique was found to be simple, rapid, economical, accurate and precise and can be effectively applied for routine analysis of titled drug in pharmaceutical formulation.

ABOUT AUTHORS

Vipin Prakash: Currently working as Associate Professor under the department of pharmaceutical analysis in JDT Islam college of Pharmacy. His area of interests are analytical method development and food analysis. He is currently pursuing doctorate in analytical method development under JNTU, Hyderabad.

Dr. A Jerad Suresh: Principal, College of Pharmacy, Madras medical college, who achieved Doctorate in Pharmaceutical sciences from Sri Ramachandra University, Chennai. He has been guiding PG and PhD students of pharmacy for many years and has got so many publications in well reputed National and International journals.

Dr. Sarif Niroush Konari: Currently working as Professor under the department of pharmaceutical analysis, in JDT Islam College of Pharmacy. His area of interests are analytical method development and validation of newer drug combinations. He achieved Doctorate in pharmaceutical analysis under faculty of pharmaceutical sciences from Nitte University. He is also an author of well reputed publication of elsevier and also reviewer of reputed journals.